Numerical Solution of a Nonlinear Integro-Differential Equation

نویسندگان

  • Ján Buša
  • Michal Hnatič
چکیده

An algorithm for the numerical solution of a nonlinear integro-differential equation arising in the single-species annihilation reaction A + A → ∅ modeling is discussed. Finite difference method together with the linear approximation of the unknown function is considered. For divergent integrals presented in the equation for dimension d = 2 a regularization is used. Some numerical results are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Legendre operational matrix to solution of two dimensional nonlinear Volterra integro-differential equation

In this article, we apply the operational matrix to find the numerical solution of two- dimensional nonlinear Volterra integro-differential equation (2DNVIDE). Form this prospect, two-dimensional shifted Legendre functions (2DSLFs) has been presented for integration, product as well as differentiation. This method converts 2DNVIDE to an algebraic system of equations, so the numerical solution o...

متن کامل

‎Numerical solution of nonlinear fractional Volterra-Fredholm integro-differential equations with mixed boundary ‎conditions‎

The aim of this paper is solving nonlinear Volterra-Fredholm fractional integro-differential equations with mixed boundary conditions‎. ‎The basic idea is to convert fractional integro-differential equation to a type of second kind Fredholm integral equation‎. ‎Then the obtained Fredholm integral equation will be solved with Nystr"{o}m and Newton-Kantorovitch method‎.  ‎Numerical tests for demo...

متن کامل

NUMERICAL SOLUTION OF THE MOST GENERAL NONLINEAR FREDHOLM INTEGRO-DIFFERENTIAL-DIFFERENCE EQUATIONS BY USING TAYLOR POLYNOMIAL APPROACH

In this study, a Taylor method is developed for numerically solving the high-order most general nonlinear Fredholm integro-differential-difference equations in terms of Taylor expansions. The method is based on transferring the equation and conditions into the matrix equations which leads to solve a system of nonlinear algebraic equations with the unknown Taylor coefficients. Also, we test the ...

متن کامل

Solving the fractional integro-differential equations using fractional order Jacobi polynomials

In this paper, we are intend to present a numerical algorithm for computing approximate solution of linear and nonlinear Fredholm, Volterra and Fredholm-Volterra  integro-differential equations. The approximated solution is written in terms of fractional Jacobi polynomials. In this way, firstly we define Riemann-Liouville fractional operational matrix of fractional order Jacobi polynomials, the...

متن کامل

Numerical solutions of nonlinear fuzzy Fredholm integro-differential equations of the second kind

In this paper, we use parametric form of fuzzy number, then aniterative approach for obtaining approximate solution for a classof nonlinear fuzzy Fredholmintegro-differential equation of the second kindis proposed. This paper presents a method based on Newton-Cotesmethods with positive coefficient. Then we obtain approximatesolution of the nonlinear fuzzy integro-differential equations by an it...

متن کامل

Presentation of two models for the numerical analysis of fractional integro-differential equations and their comparison

In this paper, we exhibit two methods to numerically solve the fractional integro differential equations and then proceed to compare the results of their applications on different problems. For this purpose, at first shifted Jacobi polynomials are introduced and then operational matrices of the shifted Jacobi polynomials are stated. Then these equations are solved by two methods: Caputo fractio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016